Plasma Physics

Academic Year 2023 – 2024

General Information

Forrestal Campus

Program Offerings:

  • Ph.D.

Department for program:

Director of Graduate Studies:

Graduate Program Administrator:


Plasmas, the fourth state of matter, are collections of freely moving charged particles (mainly electrons and ions) in which collective phenomena, such as waves, dominate the system's behavior. Plasmas are essential to many high-technology applications. One example is fusion energy, for which the fuel is a high-temperature plasma. Low-temperature plasmas are used for a growing number of materials fabrication processes, including the formation of complex microscopic and nanoscopic patterns for microelectronic and micro-optical components, and the deposition of tribological, magnetic, optical, conducting, insulating, polymeric, and catalytic thin-films. Plasmas are also important for illumination, display technology, microwave generation, destruction of toxic wastes, lasers, spacecraft propulsion, astrophysics, and advanced-design accelerators for fundamental particle research.

Applications of plasma science and technology meld several traditional scientific and engineering specialties. This program aims to provide strong interdisciplinary support and training for graduate students working in these areas. The scope of interest includes fundamental studies of the plasmas, their interaction with surfaces and surroundings, and the technologies associated with their applications.

Academics and Research
The faculty responsible for the teaching program hold positions within the Department of Astrophysical Sciences. Recognizable on the list of faculty are many names associated with classic textbooks or research papers in the field of plasma physics. Students can pursue research with the teaching faculty, associated faculty in other departments, or any of the nearly one hundred scientists at the Princeton Plasma Physics Laboratory (PPPL). The Program in Plasma Physics emphasizes both basic physics and applications. There are opportunities for research projects in the physics of the very hot plasmas necessary for controlled fusion and projects in solar, magnetospheric, and ionospheric physics, plasma processing, plasma devices, and nonneutral plasmas lasers, materials research, and other emerging areas of plasma physics. With the field of fusion energy entering an exciting phase of burning plasma and technological implementation, increasing attention is paid to the practical engineering issues that will allow fusion reactors to become economically competitive.

Graduate students entering the Program in Plasma Physics spend the first two years in classroom study, acquiring a foundation in the many disciplines that make up plasma physics: classical and quantum mechanics, electricity and magnetism, fluid dynamics, hydrodynamics, atomic physics, applied mathematics, statistical mechanics, and kinetic theory. The curriculum is supplemented by courses offered in other departments of the University and by a student-oriented seminar series in which PPPL physicists share their expertise and graduate students present their research.

In addition to formal classwork, first- and second-year graduate students work directly with the research staff, have full access to laboratory and computer facilities, and learn firsthand the job of a research physicist. First-year students typically assist in experimental research areas, and second-year students usually undertake a theoretical research project. Students must take and pass the Physics Department's preliminary examination typically during their first year of study and the program's general examination during their second year of study. After passing the general exam, students concentrate on the research and writing of a doctoral thesis.


Application deadline
December 1, 11:59 p.m. Eastern Standard Time (This deadline is for applications for enrollment beginning in fall 2024)
Program length
5 years
General Test - optional/not required; Subject Test in Physics - optional/not required

Program Offerings

Program Offering: Ph.D.


Students in the Program in Plasma Physics are not required to satisfy course requirements. Students are expected to take whatever courses they feel are necessary to prepare for the general examination or in accordance with research interests. In preparation for the preliminary examination in the Department of Physics, some students take graduate-level courses offered by the physics department in the fall.

Additional pre-generals requirements

The Department of Physics Preliminary Examination
All students must pass the preliminary examination given by the physics department. This exam is given over two days and contains material on mechanics, electricity and magnetism, quantum mechanics, and thermodynamics and statistical mechanics. Students typically take the exam in January of the first year, but a May examination is also offered.

Qualifying for the M.A.

The Master of Arts (M.A.) degree is normally an incidental degree on the way to full Ph.D. candidacy and is earned after successfully passing (a) the physics preliminary examination and (b) the written general examination. It may also be awarded to students who, for various reasons, leave the Ph.D. program, provided that these requirements have been met.

Post-Generals requirements

Thesis Proposal
The thesis proposal takes place in the eighteen months following the successful completion of the general examination. A completed thesis proposal consists of a written proposal and a proposal presentation.  The thesis committee notifies the student of the results of the thesis proposal immediately following the proposal presentation.

Dissertation and FPO

The Ph.D. is awarded after the candidate’s doctoral dissertation has been accepted and the final public oral examination sustained.


  • Director

    • Nathaniel J. Fisch
  • Director of Graduate Studies

    • Nathaniel J. Fisch
  • Associated Faculty

    • Amitava Bhattacharjee, Astrophysical Sciences
    • Edgar Y. Choueiri, Mechanical & Aerospace Eng
    • Samuel A. Cohen, PPPL Appl Mat & Sustainblty Sc
    • Steven C. Cowley, PPPL Office of the Director
    • Ilya Y. Dodin, PPPL Theory
    • Robert J. Goldston, Astrophysical Sciences
    • David B. Graves, Chemical and Biological Eng
    • Gregory W. Hammett, PPPL Theory
    • Hantao Ji, Astrophysical Sciences
    • Egemen Kolemen, Mechanical & Aerospace Eng
    • Matthew W. Kunz, Astrophysical Sciences
    • Richard P. Majeski, PPPL Appl Mat & Sustainblty Sc
    • David J. McComas, Vice President, PPL
    • Julia Mikhailova, Mechanical & Aerospace Eng
    • Felix I. Parra Diaz, Astrophysical Sciences
    • Hong Qin, PPPL Theory
    • Allan H. Reiman, PPPL Theory
    • William M. Tang, PPPL Computational Science

For a full list of faculty members and fellows please visit the department or program website.